
Definition.
Let              . We say that  is differentiable at  if there exists a limit

         
   

         

   
  

Remark.
The definition makes sense only at cluster points of   At isolated points, every function is 
differentiable.
Reformulation of the definition.
 is differentiable at  iff                    , where      is continuous at   In this 
case,           .
Proof.

Note that for          
         

   
. Thus  is continuous at  iff there exists

   
   

         

   
 

Corollary.
If  is differentiable at  then  is continuous at  .
Proof.
 is a sum of a constant and a multiple of a function continuous at   
I will not review for the differentiation of the sums, products, and fractions. But the Chain Rule is 
usually given an incorrect proof in Calculus.
Chain rule.
Let            are two functions, and let      . Let  be differentiable at    , 
      , and  be differentiable at     . Then  is differentiable at   and

                    

Proof.
Use reformulated definition of differentiability to write

                                                                

Here  and  are the corresponding functions for  and   
                   

                          

The function            is continuous at  , as a combination of continuous functions. Plugging in 

   we get the expression for the derivative. 
Rolle's Theorem.
Let          be a continuous function, which is differentiable at every point of      . Assume 
that          . Then                 .
Proof.
Since      is compact,   reaches its maximum at a point of       The rest of the proof proceeds as 
in the Calculus (cf. the textbook also). 
Cauchy Theorem (Generalized Mean Value Theorem).
Let            be two continuous functions, which are differentiable at every point of       

                                           

Corollary (Mean Value Theorem).
Take       in the previous theorem. Then 

                                

Proof of the Cauchy Theorem.
Consider the function on       

                                                  .

This function satisfies the conditions of the Rolle's Theorem. So                 .

Thus                                     

Differentiation: a review
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Definition.
A partition   of the interval      is a finite subset of      containing  and  .
Interpretation.

We can order elements of   
              

Mesh of the partition  is defined as                             

Definition.
A partition  is called a refinement of partition  if      If  and  are two partitions, a partition 
     is their common refinement.
Definition.
A marked partition of      is a pair       where  is a partition, and  is any set of points 
containing one point from each interval corresponding to   
Remark.

We can order elements of  as             such that             

Definition.
Let          . For a marked partition                                  define the 
Riemann sum for      as 

                        
   
   .  

Assume now that  is bounded on      , and                   is a partition of 
[a,b].
Define
           

            
                 

            
      

Definition.
The upper  sum of  with respect to a partition  is defined as

                        
   

   
 

The lower  sum of  with respect to a partition  is defined as

                        
   

   
 

Remark.
Note that for any marking  of a partition  we have
                       
Moreover,
          

 
                     

 
          

Proof is left as an exercise.

Lemma.
Let  be a refinement of partition  . Then
                           
Proof.
It is enough to prove the lemma for the case when    consists of exactly one element, and then 
use the induction on the number of elements in     
Let        , and let          . Then

                  
            

                

    
          

                 
         

                 

since

                   ,

Riemann integration
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                         ,

and
   

            
        

        

         
            

        
           

    .

The inequality for the lower sums is proven the same way. 
Corollary.
For any two partitions  and  , 
             
Proof.
Let      be the common refinement of both  and   
Then, by previous lemma,
                            
Definition.
Define                                     the upper and lower integral of  over      .
Remark.
By the previous corollary,           
Definition.

 is called Riemann integrable on      if                   
 

 
.

Riemann condition for integrability.
 is Riemann integrable on      iff     one can find a partition  , such that
                

Proof.
Since                        , we have                         
Thus Riemann condition implies that                  Thus           
If  is integrable, then, by the properties of supremum and infimum,
    one can find two partitions    such that 
                  

         
               

Take       By previous lemma, 
      

                                     
  .

Since  is integrable,          , so                  
Definition.
Let   be an interval. Oscilation of a function  on  is defined as
           

     
               

   
        

   
     

Note that

                            
            

   

   
 

Thus  is integrable on      iff     one can find a partition  , such that

              
            

   
      

Theorem.
 is integrable on      iff 
                                                       

                          
 

 

    

Proof.
Note that since
                                          ,
and for an integrable function  

              
 

 

        

the Theorem is equivalent to the following statement
 is integrable on      iff 
                                            
                         
The "only if" part follows immediately from the Riemann integrability condition.
Assume now that  is integrable. Let                 and fix     
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Assume now that  is integrable. Let                     and fix     

Then the Riemann integrability condition implies that for some partition 
              such that
                  

Let us now take   
 

   
, and consider any partition               with          . 

Let us divide the intervals associated with  into two classes: the intervals which lie inside one of the 
intervals from partition  and all other intervals. Note that an interval          is in the second 

class iff  for some   we have           . Thus there are at most  intervals of the second class.

Note that if                    , then                .

Thus 

                  

 

       

                        
   

   
 

On the other hand,

                   
                                          .

Thus

U(f,P)=                                               
          

       

Similarly,

              
 

 
 

Thus we get                 
Definition.
Let          .  is called increasing on  if                      
 is called decreasing on  if                      
 is called monotone on  if  is either increasing or decreasing.

Theorem.
Every monotone function on      is integrable on       
Proof.
We'll prove the Theorem for an increasing function   the prove for a decreasing function is the 
same.
Notice that  is bounded, since for any      we have               .

Take             If    , then the function is constant, so it is integrable. Assume therefore 
that     
We will use the Riemann integrability criterion. Fix     Take any partition               with 

        
 

 
 

Notice that                               and so 

              
            

   

   
                          

   

   

                         
   

   

 

 
              

Theorem.
Every continuous function on      is integrable on       
Proof.
Notice that  is bounded, since it is a continuous function on compact      .

We will use the Riemann integrability criterion. Fix     Then, since  is uniformly continuous on 

compact        one can find    such that if        , then             
 

   
  Take any 

partition               with           Note that for any                
    

 

   
 

Thus

              
            

   

   
 

 

   
           

   

   

 

   
        

Lemma.

If  and  are integrable functions on        and    , then         
 

         
 

 

Proof.
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Proof.
Just notice that for any partition  ,               

Lemma.
If  is integrable on      , then    is also integrable on        and 

        
 

 

            
 

 

Proof.

For any          we have                             Thus for any interval  ,           

         
Thus, for any partition   
                                
So    is also integrable.
Notice now that           , so

          
 

 

         
 

 

           
 

 

Corollary.
If  is integrable function on      bounded by   Then
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Theorem (Fundamental Theorem of Calculus).
Let  be an integrable function on an interval        and let

             
 

 

Then  is a continuous function. If  is continuous at some        , then  is differentiable at  , 
and            

Definition.
Let          . A function          is called antiderivative of  is           for any 
        
Corollary.
Let          be a continuous function. Then it has an antiderivative. If   is an antiderivative of 
  then

                  
 

 

Proof of Corollary.

The function             
 

 
is an antiderivative of    by the Theorem.

If  is any other derivative, then          By Mean Value Theorem, it means that     
      so

                              
 

 

Proof of Theorem.
In this proof, let      denote the interval      if    , and  the interval      if    . Similarly

        
 

 

 
 

               
 

 

        
 

 

        

 

Note now that, by Assignment 8,

                 
 

 

        
 

 

        
 

 

Since  is bounded by some number    we get that 
                  ,
which implies that  is uniformly continuous.
Assume now that  is continuous at    Then , as before

         

   
 

       
 
 

        
 
 

   
 

       
 
 

   
 

Notice that      
       

 
 

   
 

Subtracting the two last identities, and using additivity of the integral, we get

         

   
      

       
 

 

   
 

       
 

 

   
 

              
 

 

   
 

To prove that the above expression tends to   let us fix    , and select    , such that
                      
Note now that if        then                  so               
Thus

               
 

 

         

So
         

   
        

Fundamental Theorem of Calculus
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Definition.
A set    is called a set of measure zero if 
                                         such that
             , and             

   

A set    is called a set of content zero if 
                                              such that

           
   , and             

   

Remark.
Any compact set of measure zero has content zero (simply because any infinite open cover has finite 
subcover). Opposite is  always true. 

Remark.
Any subset of a set of measure (content) zero has measure (content) zero.
Example.
Any finite set has finite content: if the set consists of  points and    , cover each point of the set 

by an interval of the length less than 
 

 
 

Lemma.
Let      be a sequence(finite or infinite) of the sets of measure zero. Then      also has 
measure zero.
Proof.

Fix     Let   denote a collection of intervals of total length at most 
 

  which cover     Then the 

collection      
 
 covers the set  and has total length at most  

 

      
   

 has zero measure, but does not have zero content.1.
A set has zero content iff its closure is bounded and have zero measure.2.
Cantor set has zero measure (and zero content, since it is compact).3.

Examples.

Definition.
A property is said to be valid almost everywhere(a.e.) if the set of the points where it is not valid has 
zero measure.

Definition.(Oscillation of a function near a point. )
Let                  . Oscillation of  near  is defined as
         

   
              

Remark.
 is continuous at  iff          You will prove it in the assignment.

Lebesgue Theorem.
A bounded function on      is Riemann integrable iff it is continuous almost everywhere.
Proof.
Let  be an integrable function. It means, by Riemann Criterium, that for each  one can find a 
partition   such that                    . Let us call an interval   from   wild if       
   , otherwise an interval will be called tame. Now let us observe that (   denotes the length of the 
interval  )

       

 

             

       

 

               

                       

Thus 
     

             
    .

Now let us define
                                                         .
Let us consider 

    

 

 

    

 

 

Lebesgue Integrability Theorem.
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Let us first show that  has measure zero.
Each   is finite, so union of the sequence of them has zero measure. 
Each   is covered by the wild intervals from   with      The total length of all these intervals 
does not exceed

          

 

   

 

Since the last expression tends to zero when      the set    
 
 has measure zero.

Assume that now    . It means, in particular, that for some  the intervals form        
containing  , is tame. Also  itself is not a point of any partition. Fix    , and pick    such 
that       Then  lies inside one of the tame intervals from   , i.e.              Choose 

small  , such that                     Thus we get 

                                          since 

         is tame. Since        for every     we get that         

So the function  is continuous at all points outside of  . Since  has measure zero,
 is a.e. continuous.

Assume now that  is bounded and a.e. continuous. Let      for some    .
Fix      We will find a partition  with                 

Let us consider             
 

      
   is not continuous at any point of  . Thus  has 

measure zero. 
Let us now show that  is closed. Let  be a limit point of  . Fix     Then 
              Let              .
Then for some                         
We have

 

      
                                  .

This implies that 

                       
 

      
 

So     
We just proved that  contains all of its limit points, and so it is a closed set. It is also bounded, 
since          It means that it is compact.
Since  is a compact set of measure zero, it also has a zero content.
Let now          is a finite covering of  with                

   

The set                  
    is compact, and no point of it belongs to   

Thus                         
 

      
. 

The family of open sets                     
 is an open cover of  , and we can select a finite 

subcover             
 . Note that by the our construction,

            
 

      
(since                    for some    ).

Now let us define the partition 
                                                   .

Call the interval           of the partition  nice if            . Otherwise, let us call it nasty.
Notice that any nice interval is subset of some [     ], and thus 

              
 

      
  On the other hand, every nast interval subset of some  [     ], and thus 

the total length of nasty intervals does not exceed 
 

  
 

Now we are ready to estimate
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